## Why so blue? The blood gas has the clue...

John P Thomas<sup>1</sup>, Yat MA Hung<sup>2</sup>, Prasanna Sankaran<sup>3</sup>

Keywords: cyanosis, dapsone, hidradenitis suppurativa, hypoxia, methaemoglobinaemia

Financial and Competing Interests: No conflict of interests declared.

**Informed Consent:** Written informed consent for the paper to be published (including images, case history and data) was obtained from the patient for publication of this paper, including accompanying images.

Correspondence to: John P Thomas Department of Gastroenterology Norfolk & Norwich University Hospital Colney Lane Norwich NR4 7UY UK

**Email:** 

drjohnpthomas@gmail.com

A 48-year-old female presented to the Emergency Department with a two-week history of increasing fatigue. On examination, she had blue-grey central and peripheral cyanosis with tachypnoea and an oxygen saturation of 85% on room air (Figure 1). She was placed on high-flow oxygen, but her oxygen saturation on the pulse oximeter only marginally improved to 90%. Arterial blood gas (ABG) on room air showed pH 7.66 (7.36-7.47), PaCO<sub>2</sub> 2.89

Figure 1 Picture of patient with peripheral cyanosis at presentation to hospital



<sup>1</sup>NIHR Academic Clinical Fellow, Department of Gastroenterology, Norfolk and Norwich University Hospital, Norwich, UK; <sup>2</sup>GP Trainee, Department of Accident and Emergency, Hinchingbrooke Hospital, Huntingdon, UK; <sup>3</sup>Consultant Respiratory Physician, Department of Respiratory Medicine, Norfolk and Norwich University Hospital, Norwich, UK

Table 1 Drugs causing methaemoglobinaemia<sup>2</sup>

| High risk agents                |                                               | Methaemoglobin                                                                                                                                                                                       | Clinical findings                                       |
|---------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| Local anaesthetics              | Antimalarials                                 | concentration                                                                                                                                                                                        |                                                         |
| Benzocaine                      | Quinine sulphate                              | 1–3%                                                                                                                                                                                                 | None                                                    |
| Prilocaine                      | Primaquine<br>Chloroquine                     | 3–15%                                                                                                                                                                                                | Possibly none, low oxygen saturations on pulse oximeter |
| Antibiotics                     |                                               | 15–20%                                                                                                                                                                                               | Cyanosis (central and peripheral)                       |
| Sulphonamides                   | Chemicals                                     | 10 20%                                                                                                                                                                                               | not improving with oxygen                               |
| Dapsone                         | Aniline (dyes, ink)                           |                                                                                                                                                                                                      | administration, slate-grey skin                         |
| Ciprofloxacin                   | Paraquat                                      |                                                                                                                                                                                                      | colour                                                  |
| Trimethoprim                    | Resorcinol                                    | 20–50%                                                                                                                                                                                               | Dyspnoea, tachypnoea, headache,                         |
| Nitrofurantoin                  | Chlorate                                      | 20-30%                                                                                                                                                                                               | fatigue, dizziness, syncope,                            |
| Nitrates/nitrites               | Aromatic hydrocarbons                         |                                                                                                                                                                                                      | weakness, nausea                                        |
| Nitroglycerine                  | Benzene derivatives                           | 50-70%                                                                                                                                                                                               | Metabolic acidosis, dysrhythmia,                        |
| Nitric oxide                    | Naphthalene                                   |                                                                                                                                                                                                      | seizures, central nervous system                        |
| Isosorbide dinitrate            |                                               |                                                                                                                                                                                                      | depression, coma                                        |
| Amyl nitrate<br>Nitroprusside   | Hormones<br>Flutamide                         | >70%                                                                                                                                                                                                 | Grave hypoxic symptoms, death                           |
| Antiepileptics<br>Phenobarbital | <b>Others</b><br>Metoclopramide<br>Phenelzine | Methaemoglobinaemia is defined as an abnormal increase in<br>methaemoglobin levels, i.e. >1–2% of total haemoglobin. <sup>1</sup> It<br>arises due to oxidation of one or more haem molecules within |                                                         |
| Low-moderate risk age           | ents                                          |                                                                                                                                                                                                      | the reduced ferrous state to the ferric                 |
| Local anaesthetics              | General anaesthetics                          | state. High methae                                                                                                                                                                                   | moglobin levels cause left-shift of the                 |
| Lidocaine                       | Propofol                                      | oxygen–haemoglobir                                                                                                                                                                                   | n dissociation curve and impaired oxygen                |
| Bupivacaine                     | Thiopental                                    | delivery to tissues. V                                                                                                                                                                               | Vhilst small amounts of methaemoglobin                  |
| Mepivacaine                     | Succinylcholine                               | are produced con                                                                                                                                                                                     | stantly, the enzymes cytochrome-b5                      |
| Articaine                       | Inhalational anaesthetics                     | reductase and NADF                                                                                                                                                                                   | PH methaemoglobin reductase maintain                    |
| Etidocaine                      |                                               | methaemoglobin l                                                                                                                                                                                     | evels below $1\%$ . <sup>2</sup> When the rate of       |
|                                 | Analgesics                                    | methaemoglobin for                                                                                                                                                                                   | mation exceeds that of reduction, tissue                |
| Sedatives                       | Fentanyl                                      | hypoxia occurs. This                                                                                                                                                                                 | can arise due to congenital disorders,                  |
| Benzodiazepines                 | Meperidine                                    | e.g. genetic defects i                                                                                                                                                                               | in haemoglobin structure/metabolism, or                 |
|                                 | Paracetamol                                   | acquired causes from                                                                                                                                                                                 | m exposure to external oxidising agents,                |
| Antipsychotics                  | Aspirin                                       | e.g. food additives,                                                                                                                                                                                 | workplace chemicals (e.g. aniline dyes)                 |
| Phenothiazines                  | Phenazopyridine                               | -                                                                                                                                                                                                    | apsone (Table 1). <sup>2</sup> Haemolysis is also       |
|                                 |                                               | -                                                                                                                                                                                                    | th democra theremy and is accepted                      |

kPa (4.60-6.40 kPa), PaO<sub>2</sub> 13.7 kPa (10.6-14.6 kPa), HCO<sub>3</sub> 26.6 mmol/L (22-28 mmol/L), base excess 1.2 mmol/L (-2 to +1 mmol/L), Sa0, 96.4% (>94%), F0, Hb 81.3% (>94%) and methaemoglobin 15.9% (<1%). She had a background history of hidradenitis suppurativa (HS) and asthma. She had been on dapsone for the last four years for HS and the dosage had been recently increased by her dermatologist from 100 mg to 200 mg once daily. Additionally, her records revealed a persistently elevated reticulocyte count for the past four years and unexpectedly high oxygen demands during a recent surgical procedure. These findings led to the diagnosis of dapsone-induced methaemoglobinaemia.

The patient was asked to stop dapsone and discharged the same day. She returned to the outpatient clinic one week later with resolution of both her symptoms and clinical signs of cyanosis. Her oxygen saturation was 98% on air and an ABG revealed normal arterial oxygen saturation (SaO<sub>2</sub>), fractional oxyhaemoglobin (FO<sub>2</sub>Hb) and methaemoglobin levels.

Table 2 Clinical findings in patients with methaemoglobinaemia<sup>4</sup>

| Methaemoglobin<br>concentration | Clinical findings                                                                                           |
|---------------------------------|-------------------------------------------------------------------------------------------------------------|
| 1–3%                            | None                                                                                                        |
| 3–15%                           | Possibly none, low oxygen saturations on pulse oximeter                                                     |
| 15–20%                          | Cyanosis (central and peripheral)<br>not improving with oxygen<br>administration, slate-grey skin<br>colour |
| 20–50%                          | Dyspnoea, tachypnoea, headache,<br>fatigue, dizziness, syncope,<br>weakness, nausea                         |
| 50–70%                          | Metabolic acidosis, dysrhythmia,<br>seizures, central nervous system<br>depression, coma                    |
| >70%                            | Grave hypoxic symptoms, death                                                                               |

n lt С 5 ١f e well-documented with dapsone therapy and is associated with the presence of methaemoglobinaemia.<sup>3</sup>

At methaemoglobin concentrations below 20%, the patient is usually asymptomatic; however, as levels exceed 20%, bluegrey central cyanosis and chocolate-brown discolouration of the blood begin to manifest. Concentrations above 70% can be fatal (Table 2).4

As demonstrated in this case, ABG analysis can clinch the diagnosis.<sup>4</sup> The total FO<sub>2</sub>Hb, i.e. the proportion of oxygenated haemoglobin in relation to total haemoglobin (including dyshaemoglobins such as methaemoglobin and carboxyhaemoglobin), will be low in these patients. However, it is important to note that they will have normal PaO<sub>2</sub> (partial pressure of oxygen in blood) and SaO<sub>2</sub>. This is because the PaO<sub>2</sub> level relates to the fraction of oxygen that is dissolved in blood plasma rather than that bound to haemoglobin.<sup>5</sup> As methaemoglobinaemia does not affect oxygen diffusion from the alveoli to the blood plasma, arterial PaO<sub>2</sub> will remain normal. SaO<sub>2</sub> reflects the level of oxygen bound to haemoglobin but will be falsely normal as its calculation is based on the assumptions of a normal oxygen dissociation curve and physiological levels of dyshaemoglobins, which do not hold true in methaemoglobinaemia.<sup>6</sup> However, oxygen saturation measured by pulse oximetry will be reduced because methaemoglobin absorbs the two wavelengths of light that are utilised to non-invasively estimate the percentage of oxyhaemoglobin in the blood.<sup>6</sup> Thus, administration of highflow oxygen will not increase the FO<sub>2</sub>Hb, SaO<sub>2</sub> or resolve blue-grey cyanosis, but it can improve blood gas PaO<sub>2</sub> and, to a lesser degree, oxygen saturation on the pulse oximeter.

Patients with methaemoglobin levels of <20% can be managed conservatively by discontinuing the offending agent, as methaemoglobin will be reduced over several hours by the intrinsic activity of methaemoglobin reductase enzymes.<sup>4</sup> Patients in respiratory distress should be given high-flow oxygen. Symptomatic patients or those with methaemoglobin levels >20% require treatment with methylene blue infusion (contraindicated in glucose-6-phosphate-dehydrogenase deficiency) which causes non-enzymatic reduction of methaemoglobin. Plasma exchange, haemodialysis, hyperbaric oxygen therapy and supplemental antioxidants (e.g. *N*-acetylcysteine) can be used as adjuvants or alternative strategies if initial treatment fails.<sup>4</sup>

In conclusion, methaemoglobinaemia is an uncommon but potentially fatal clinical encounter that is often not considered in patients presenting with hypoxia and cyanosis. It is important that patients on regular oxidising medications (e.g. dapsone) are monitored appropriately for methaemoglobinaemia. Early recognition of the condition and appropriate treatment can result in a favourable outcome for patients. ()

## References

- Rehman HU. Methemoglobinemia. West J Med [Internet] 2001; 175: 193–6. Available from: https://pubmed.ncbi.nlm.nih. gov/11527852
- 2 Veltri KT, Rudnick E. Benzocaine-induced methemoglobinemia: a case report. P & T: a peer-reviewed journal for formulary management 2016; 41: 180–91.
- 3 Barclay JA, Ziemba SE, Ibrahim RB. Dapsone-induced methemoglobinemia: a primer for clinicians. *Ann Pharmacother* 2011; 45: 1103–15.
- 4 Ludlow JT, Wilkerson RG, Sahu KK et al. Methemoglobinemia. In: *StatPearls [Internet]*. Treasure Island, FL: StatPearls Publishing; 2020. Available from: http://www.ncbi.nlm.nih. gov/books/NBK537317/
- 5 Collins J-A, Rudenski A, Gibson J et al. Relating oxygen partial pressure, saturation and content: the haemoglobin–oxygen dissociation curve. *Breathe (Sheff) [Internet]* 2015;11: 194–201. Available from: https://pubmed.ncbi.nlm.nih. gov/26632351
- 6 Chan ED, Chan MM, Chan MM. Pulse oximetry: understanding its basic principles facilitates appreciation of its limitations. *Respir Med* 2013; 107: 789–99.