SESSION 1

MODIFYING ENVIRONMENTAL FACTORS IN DIABETES AND CARDIOVASCULAR DISEASE

Chairman: Dr R Reynolds, Clinical Senior Lecturer in Endocrinology and Diabetes, Queen's Medical Research Institute, Edinburgh, Scotland

Promoting and maintaining physical activity in people with Type 2 diabetes

Dr A Kirk, Lecturer in Sports Biomedicine, Institute of Sports and Exercise, University of Dundee, Dundee, Scotland

Email A.kirk@dundee.ac.uk

Abstract The evidence that physical activity is an effective therapeutic tool in the management of Type 2 diabetes is well documented. Unfortunately, the majority (approximately 80%) of people with Type 2 diabetes do not achieve the current physical activity recommendations for health of accumulating 30 minutes of moderate-intensity physical activity most days of the week. In comparison to the general population, people with Type 2 diabetes report higher levels of relapse from a physically active lifestyle. Compared to other self-care behaviours they have the lowest self-efficacy for physical activity, and the lowest belief in its effectiveness. Limited research has addressed how best to promote and maintain physical activity in these individuals. Motivational tools such as pedometers and point of choice prompts appear to be effective at stimulating short-term substantial increases in physical activity, but further strategies to maintain physical activity behaviour change are required. Physical activity consultation has demonstrated effective physical activity promotion over periods of up to two years in people with Type 2 diabetes. Future research should identify the longer term effects of this intervention, and the effectiveness of different methods of delivery. Overall, there needs to be a lot more focus on this area of research. Without this, the abundance of research investigating the effects of physical activity on people with Type 2 diabetes is essentially redundant.

Key words Type 2 diabetes, physical activity, relapse from a physically active lifestyle, motivational tools.

Sponsors None.

Declaration No conflict of interest declared.

Macro and micro-nutrients: can diet reduce risk of cardiovascular disease?

Dr M Burr, Department of Epidemiology, Statistics and Public Health, Cardiff University, Cardiff, Wales

Email burrml@cf.ac.uk

Abstract

Background A very large body of literature deals with the relationship between diet and cardiovascular risk. There is considerable variation in the strength and consistency of the evidence for different dietary factors.

Methods or Theme Cohort studies show associations between diet and disease incidence, but the effects of confounding variables are difficult to eliminate. Randomized controlled trials with health outcomes supply the best evidence, although compliance may be inadequate. Indirect evidence of benefit comes from trials with physiological variables as endpoints.

Modifying fat intake reduces cardiovascular disease incidence, as shown by a systematic review of RCTs.

Cohort studies suggest that fruit, vegetables, wholegrain foods, nuts and moderate alcohol intake are protective. Most RCTs of fish and fish oil show benefit, though one study showed an adverse effect. Supplementary antioxidants and folic acid appear to be ineffective. Salt reduction reduces blood pressure and the incidence of cardiovascular events.

Conclusions Cardiovascular risk can be reduced by diet, though the evidence is not equally strong for all relevant factors. Supplements do not necessarily have the same effects as the foods in which they occur naturally.
References

Key words: Diet, heart disease, cardiovascular disease.

Sponsors None.

Declaration Grants for my research were obtained from The Flora Project, Seven Seas Ltd, Novex Pharma Ltd, and The Fish Foundation.

MARJORY ROBERTSON LECTURE

Chairman: Professor N Douglas, President, Royal College of Physicians of Edinburgh, Edinburgh, Scotland

Finnish diabetes prevention study: translating lifestyle advice into clinical practice

Dr J Tuomilehto, Professor of Public Health, University of Helsinki, Finland

Abstract Not available at the time of going to press.

SESSION 2 HOW GENETICS ALTER CLINICAL PRACTICE

Chairman: Dr R Lindsay, Clinical Senior Lecturer in Diabetes and Endocrinology, University of Glasgow, Glasgow, Scotland

Genetics of phaeochromocytoma

Professor E Maher, Head of Department of Medical and Molecular Genetics, University of Birmingham, Birmingham, England

Email E.R.Maher@bham.ac.uk

Abstract

Background Traditionally, phaeochromocytoma has been reported to be inherited in ~10% of cases, but molecular genetic testing has revealed a significantly higher frequency of genetic susceptibility e.g., 15–25%, of apparently sporadic cases. The major genetic causes of phaeochromocytoma are VHL disease, MEN 2, NF1 and SDH subunit mutations. Von Hippel-Lindau disease is characterised by the development of retinal and central nervous system haemangioblastomas, renal cell carcinoma, phaeochromocytoma and pancreatic islet cell pancreatic cancers. However, germline VHL tumour suppressor gene mutations may also cause familial and sporadic non-syndromic phaeochromocytoma. Phaeochromocytoma in MEN 2 tends to present after MTC. Phaeochromocytoma occurs in only a small minority of patients with NF1 and a clinical diagnosis of NF1 can be made in such cases. Both phaeochromocytoma and head and neck paragangliomas (glomus tumours) may be associated with germline mutations in succinate dehydrogenase (mitochondrial complex II) subunits (SDHB, SDHC and SDHD). Germline mutations in SDHB or SDHD may present at familial or sporadic phaeochromocytoma. Succinate dehydrogenase mutations are more commonly associated with extra-adrenal phaeochromocytomas and there is an increased frequency of malignant tumours in SDHB mutation carriers. Molecular genetic studies should be instigated in all cases of familial, early onset or multicentric phaeochromocytoma. Although there is not general consensus on the criteria for testing apparently sporadic non-syndromic cases, testing should be prioritised in those with malignant or extra-adrenal tumours and younger onset cases of adrenal phaeochromocytoma. Indications for testing include a younger age at onset (e.g. <40 years) and extra-adrenal or malignant phaeochromocytomas. In addition, a detailed personal and family history may uncover evidence of VHL disease or MEN 2 and so provide an indication for specific gene testing. A family history of head and neck paraganglioma will highlight a likely SDHB or SDHD mutation (particularly if there are the parent-of-origin effects suggestive of an SDHD mutation).

Conclusions Families in whom a germline mutation is identified should be offered appropriate further investigation and management. However, protocols for the long-term surveillance of SDHB and SDHD mutation carriers are still ‘a work in progress’.

References

Key words: Phaeochromocytoma inherited syndrome genetics.
Abstract

Existing approaches to T2D prevention and/or treatment have limited impact, due to our poor understanding of the aetiological mechanisms. The identification of genetic variants that increase T2D risk is a powerful way to improve aetiological understanding. Well-powered genome-wide association studies now offer a unique chance to identify type 2 diabetes genes and increase our understanding of this disease. Results from the first wave of genome-wide association scans for T2D are now emerging, and mean that there are now nine genes with a confirmed role in T2D risk. These include newly identified variants at FTO, CDKAL1, CDKN2A/B, IGF2BP2, HHEX/IDE, and SLC30A8. The rapid identification of these six loci contrasts sharply with the limited progress achieved with all previous efforts in the field (three robustly-identified loci — PPARG, KCNJ11 and TCF7L2). Risks conferred by these loci range from odds ratios of 1.12 to 1.4 for each risk allele inherited. The T2D-association at FTO is driven entirely by an effect on body mass index, a result confirmed in a total of 39,441 participants (p=4x10^-35). For the FTO variant, 16% of the population carrying two minor alleles are 2.8 kg heavier than the 35% of common allele homozygous carriers and DEXA scans in 6,000 children show that this effect is entirely due to altered fat mass.

The challenge now is to find more genes that alter diabetes and obesity risk, and to translate these findings into clinical practice. This is most likely to come from our improved understanding of the aetiology, but as more genes are found, it may be possible to tailor treatments to people with different sets of risk genotypes.

References

Keywords

Type 2 diabetes, risk alleles, genome wide associations FTO, CDKAL1, CDKN2A/B, IGF2BP2, HHEX/IDE, SLC30A8 PPARG, KCNJ11, TCF7L2.

Sponsors

None.

Declaration

No conflict of interest declared.
CME

resection or debulking of pituitary adenomas improves hormonal control of acromegaly by somatostatin analogs. EJE 2005; 152:61–6.

Key words Acromegaly, pegvisomant, octreotide, lanreotide, GH, IGF-I.

Sponsors None.

Management of neuroendocrine tumours

Dr V Lewington, Consultant Physician, Nuclear Medicine, Royal Marsden Hospital, London, England

Email Val.lewington@rmh.nhs.uk

Abstract

Background The term ‘neuroendocrine tumour’ covers a broad spectrum ranging from indolent, non-secreting tumours to aggressive malignancies. The variable presentation and long natural history of neuroendocrine disease pose significant diagnostic and management difficulties.

Diagnosis Diagnostic imaging advances including endoscopic ultrasound have improved the sensitivity of pre-operative localisation of solitary tumours. Functional imaging using radiolabelled tumour specific molecules is increasingly used to compliment conventional anatomical imaging such as CT and MRI in initial staging and monitoring treatment response in advanced disease. Useful prognostic indicators include the biochemical markers chromogranin A and B, specific patterns of hormone hypersecretion and histopathological assessment of proliferative index (Ki-67).

Management Surgery remains the only curative option for patients with solitary tumours. The majority of patients present relatively late, however, and management options in advanced disease range from watchful waiting to combination chemotherapy. Somatostatin analogue therapy delivers durable symptom palliation for patients with functionally active tumours. This may be combined with loco-regional treatment such as hepatic artery embolisation or radiofrequency ablation in patients with symptomatic hepatic metastases.

Targeted radionuclide therapy using high activity radiolabelled peptides is a well tolerated systemic approach for patients with disseminated disease. Indications for treatment include symptom breakthrough despite maximal somatostatin analogue therapy and/or evidence of tumour progression.

Clinical trials using anti-angiogenesis drugs, which exploit the vascularity of neuroendocrine tumours, and growth factor inhibitors are in preparation.

Conclusions The rarity and clinical complexity of metastatic neuroendocrine tumours demand close multidisciplinary collaboration in specialist centres. The optimal timing and potential side effects of treatment in relatively indolent disease should be considered on an individual patient basis.

References

Key words Neuroendocrine tumour, somatostatin analogue, targeted radionuclide therapy.

Sponsors None.

Declaration I am a member of the UK Neuroendocrine Tumour Network which is supported by educational grants from Novartis Oncology and Ipsen Limited.

SESSION 3

EMERGING THERAPIES IN ENDOCRINOLOGY

Chairman: Dr M Strachan, Consultant Physician, Western General Hospital, Edinburgh, Scotland

Incretin hormones as targets in the management of Type 2 diabetes

Professor A Barnett, Professor of Medicine, University of Birmingham and Birmingham Heartlands and Solihull National Health Service Trust, Birmingham, England

Email anthony.barnett@heartofengland.nhs.uk

Abstract

Background Type 2 diabetes is a progressive disease with dual defects of insulin resistance and islet cell dysfunction, the latter involving both the pancreatic beta cell (producing insulin) and alpha cell (producing glucagon). The incretins are gut-derived hormones secreted in response to nutrient ingestion. They potentiate insulin secretion from pancreatic beta cells and reduce glucagon production from the alpha cells. The main hormone of interest is GLP-1 which also has additional effects on slowing gastric emptying and appetite reduction. GLP-1 is reduced in T2D. The incretins are rapidly degraded by the enzyme DPP-4.

Conclusions Incretin based therapies include the incretin-mimetics which are GLP-1-like and DPP-4 resistant (exenatide and liraglutide) and DPP-4 inhibitors which inhibit degradation of DPP-4 (e.g. vildagliptin, sitagliptin). Exenatide has recently been licensed and is given by twice daily subcutaneous injection. It is associated with improvement in glycaemic control, reduced risks of hypoglycaemia compared with insulin, and reduced body weight. Nausea is a common side-effect.
The first DPP-4 inhibitor (sitagliptin) has recently been licensed. These agents are taken orally, providing reductions in HbA1c which appear to be sustained over at least one year are weight neutral and with reduced risks of hypoglycaemia compared with sulphonylureas and insulin. Sitagliptin is licensed for combination therapy with metformin or a glitazone and has a good tolerability profile. The place in therapy of these agents will be discussed.

Key words Type 2 diabetes, insulin resistance, islet cell dysfunction, insulin, incretins, GLP-1, DPP-4 inhibitors, exenatide, liraglutide, vildagliptin, sitagliptin.

Sponsors None.

Declaration Professor Barnett has been paid for advisory work and lectures, as well as provision of research support from relevant companies, including MSD, Novartis, Eli Lilly and Sanofi-Aventis.