Free translation of figure legend. A: Toothed wheel attached to the [vertical] shaft. B. Horizontal shaft. C. Wheel made of metal castings [a pinion]. D: Wheel near the latter [in fact, the brake drum]. E: Drum made up of round bars [the winding drum]. F: Brake-lever [this refers to the beam passing through the ground which, when pulled down, forces the depression in the beam H against the drum D]. G: Pivoted beam. H: Short beam [which carries the brake shoe]. I: Hook [to tilt the hoisted bucket for emptying].

See article on p. 281 for more information.
The Sibbald Library’s summer exhibition

The Sibbald Library’s summer exhibition complemented the 2011 World Congress of Epidemiology held in Edinburgh. Inevitably College treasurer James Lind’s groundbreaking controlled trial Treatise on the Scurvy was displayed along with John Snow’s classic work on the mode of communication of cholera. However, the extraordinary scope of the collection here in Queen Street was perhaps best illustrated by some of the other epidemiology classics that featured in the exhibition. For instance there is much material of epidemiological relevance in an early addition to the library—a 16th century classic on metallurgy.

Written by a German physician Georgius Agricola, *De re metallica* describes conditions in Jachymov in the Czech Republic which was one of the most important mining regions in Europe in the 16th century (Figure 1). Agricola’s spectacular book, which is illustrated by 292 woodcuts, is one of the first reference works on mining and metallurgy. The encyclopaedic volume doesn’t just cover technology and geology but also describes the many occupational health issues faced by miners. The large risk of accidents, the dangers of poor ventilation (particularly when heating rocks to extract metals) and more unexpected hazards like venomous ants are all covered.

John Graunt who worked as a London draper is a surprising epidemiology pioneer. A contemporary of Pepys and Sibbald, Graunt was encouraged in his statistical work by the influential physician and administrator Sir William Petty. Graunt’s book used pre-Great Plague data extracted from the London Bills of Mortality to report on public health matters like the numbers of people dying from epidemic diseases (Figure 2). Graunt, who showed a sophisticated understanding of statistical method, also produced an early life table.

The Library has a copy of the rare first edition of Hungarian physician Ignaz Semmelweis’s classic explanation of puerperal fever (Figure 3). Semmelweis statistically documented and compared the occurrence of puerperal fever over the course of time in two different Viennese obstetric clinics and deduced that a ‘particle’ picked up during autopsies was responsible for the disease. Sir James Young Simpson was an early supporter of Semmelweis and praised his work in a paper in the *Monthly Journal of Medical Science*.

Our copy of the book comes from the Simpson Collection and was probably sent to Sir James by Semmelweis himself.

Iain Milne

Sibbald Librarian, RCPE